Tentamen Analyse 2012

Datum : 06-11-2012

Tijd : 14.00 - 17.00, Tentamenhal 1

You need to clearly provide arguments for all your answers; 'yes' or 'no' answers are not allowed.

The detailed grading scheme can be found below.

1. (a) Consider the sequence (a_n) defined by

$$a_n = (-1)^n \frac{2n+1}{n+2}, \quad n = 1, 2, \dots$$

Is (a_n) convergent? Determine the limit points of the set $A := \{a_1, a_2, \ldots\}$, and determine the closure \overline{A} .

- (b) Take any non-empty subset $E \subset \mathbb{R}$. Define $G := E^c$ (the complement of E), and $F := \overline{G}$. Show that F^c is the largest open set contained in E. Does there exist for any E a *smallest* open set *containing* E? (If yes, prove; if not, give a counterexample.)
- 2. Let $f:[a,b]\to\mathbb{R}$ be a continuous function with

$$f(a) \le a, \quad f(b) \ge b$$

Show that there exists a point $c \in [a, b]$ with f(c) = c.

3. Consider a differentiable function $g: \mathbb{R} \to \mathbb{R}$ with bounded derivative g' (that is, there exists an M > 0 such that $|g'(x)| \leq M$ for all $x \in \mathbb{R}$). Prove that the function $f_{\epsilon}: \mathbb{R} \to \mathbb{R}$ defined as

$$f_{\epsilon}(x) := x + \epsilon g(x)$$

is one-to-one for small enough $\epsilon > 0$.

4. Consider the sequence of functions

$$f_n(x) = \frac{x^n}{1 + x^n}, \quad x \ge 0$$

(a) Verify by computation that for each x the sequence $f_n(x)$ converges to f(x), where the function $f:[0,\infty)\to\mathbb{R}$ is given by

$$f(x) = \begin{cases} 0, & x \in [0, 1) \\ \frac{1}{2}, & x = 1 \\ 1, & x \in (1, \infty) \end{cases}$$

Deduce from this that f_n does not converge uniformly on [0,1].

1

- (b) Show that f_n converges uniformly on every interval [0, c] with c < 1.
- (c) Show that f_n converges uniformly on every interval $[b, \infty)$ with b > 1. Does f_n converge uniformly on the interval $(1, \infty)$? If yes, prove; if not, show why. (**Hint**: You may use $(1 + \frac{1}{n})^n \to e$ for $n \to \infty$.)
- 5. Consider the functions $f_n:[0,1]\to\mathbb{R}$ defined by

$$f_n(x) = n^2 x^n (1 - x), \quad x \in [0, 1]$$

- (a) Verify that f_n converges pointwise to the zero-function $f(x) = 0, x \in [0, 1]$.
- (b) Calculate $\lim_{n\to\infty} \int_0^1 f_n(x) dx$.
- (c) Does $f_n \to f$ uniformly on [0,1]? (Provide arguments.)
- 6. Consider the series

$$f(x) = \sum_{n=2}^{\infty} \frac{1}{\sin x + n^2}$$

- (a) Prove that f is continuous on \mathbb{R} .
- (b) Is f differentiable on \mathbb{R} ? If so, is f' continuous? (Again, provide argumentation.)
- 7. Consider a continuous function $f:[a,b]\to\mathbb{R}$. Prove that there exists a $c\in(a,b)$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)dx$$

Does this still hold if $f:[a,b] \to \mathbb{R}$ is bounded, but continuous only on (a,b)?

Grading scheme (Total 100). Free 10.

- 1. a: 6, b; 7.
- 2. 10.
- 3. 12.
- 4. a: 6, b: 4, c: 9.
- 5. a: 2, b: 5, c: 4.
- 6. a: 5, b: 9.
- 7. 11.